今天是2024年12月15日 星期日 hftc 退出

Shorter Quadratic QA-NIZK Proofs

http://www.firstlight.cn2019/3/1

[作者] Vanesa Daza Zaira Pindado Javier Silva

[单位] Cybercat and Universitat Pompeu Fabra

[摘要] Despite recent advances in the area of pairing-friendly Non-Interactive Zero-Knowledge proofs, there have not been many efficiency improvements in constructing arguments of satisfiability of quadratic (and larg…

[关键词] zero knowledge elliptic curve cryptosystem

Despite recent advances in the area of pairing-friendly Non-Interactive Zero-Knowledge proofs, there have not been many efficiency improvements in constructing arguments of satisfiability of quadratic (and larger degree) equations since the publication of the Groth-Sahai proof system (JoC'12). In this work, we address the problem of aggregating such proofs using techniques derived from the interactive setting and recent constructions of SNARKs. For certain types of quadratic equations, this problem was investigated before by González et al. (ASIACRYPT'15). Compared to their result, we reduce the proof size by approximately 50% and the common reference string from quadratic to linear, at the price of using less standard computational assumptions. A theoretical motivation for our work is to investigate how efficient NIZK proofs based on falsifiable assumptions can be. On the practical side, quadratic equations appear naturally in several cryptographic schemes like shuffle and range arguments.

存档附件原文地址

原文发布时间:2019/3/1

引用本文:

Vanesa Daza;Zaira Pindado;Javier Silva.Shorter Quadratic QA-NIZK Proofshttp://hftc.firstlight.cn/View.aspx?infoid=3941064&cb=Z09890000000
发布时间:2019/3/1.检索时间:2024/12/15

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...