今天是2024年12月15日 星期日 hftc 退出

Joint Learning Improves Semantic Role Labeling

http://www.firstlight.cn2015/6/12

[作者] Kristina Toutanova Aria Haghighi Christopher D. Manning

[单位] Stanford University

[摘要] Despite much recent progress on accurate semantic role labeling, previous work has largely used independent classifiers,possibly combined with separate label sequence models via Viterbi decoding. This stands in…

[关键词] Joint Learning Semantic Role Labeling

Despite much recent progress on accurate semantic role labeling, previous work has largely used independent classifiers,possibly combined with separate label sequence models via Viterbi decoding. This stands in stark contrast to the linguistic observation that a core argument frame is a joint structure, with strong dependencies between arguments. We show how to build a joint model of argument frames, incorporating novel features that model these interactions into discriminative loglinear models. This system achieves an error reduction of 22% on all arguments and 32% on core arguments over a stateof-the art independent classifier for goldstandard parse trees on PropBank.

存档附件原文地址

原文发布时间:2015/6/12

引用本文:

Kristina Toutanova;Aria Haghighi;Christopher D. Manning.Joint Learning Improves Semantic Role Labelinghttp://hftc.firstlight.cn/View.aspx?infoid=3509873&cb=Z07870000000
发布时间:2015/6/12.检索时间:2024/12/15

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...