理学 >>> 数学 >>> 应用数学 >>>
搜索结果: 1-11 共查到应用数学 Blow-up相关记录11条 . 查询时间(0.046 秒)
In this paper, we address the solution of a semilinear heat equation with variable reaction subject to Dirichlet boundary conditions and nonnegative initial datum. Under some assumptions, we show that...
This paper deals with the blow-up properties of the solution to the degenerate and singular parabolic system with nonlocal sources, absorptions and homogeneous Dirichlet boundary conditions. The exist...
Using Differential Transform to solve blow up solutions of some linear wave equation with mixed non-linear boundary conditions is proposed in this study.Non-linear boundary conditions cause the finite...
In this paper, we establish a blow-up criterion for the compressible liquid crystals equations in terms of the gradient of the velocity only, similar to the Beale-Kato-Majda criterion \cite{majda} fo...
Let (M,g) be a compact n-dimensional Riemannian manifold with boundary. This article is concerned with the set of scalar-flat metrics on M which are in the conformal class of g and have the boundary ...
We study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove ...
卷期页码:第26卷 第12期 (2005年12月) P.1487 文章编号:1000-0887(2005)12-1487-06 一类渗流方程解在边界上的不稳定性和Blow-up 曹镇潮1,陈彭年2 1.厦门大学 数学科学学院 厦门 361005;2.中国计量学院 数学系,杭州 310018 摘要:对一类具有非线性第二、第三边值条件的非线性渗流方程,证明了解的先验的界可以用初值和解在...
This paper deals with the blow-up profiles of the nonnegative solutions to a degenerate reaction-diffusion system with nonlinear nonlocal sources involved in a product with local terms, subject to the...
In this paper, we give some results on the blow-up behaviors of the solution to the mixed problem for some higher nonlinear hyperbolic evolution equation in finite time .By introducing the ``blow-up f...
In this paper, we establish the local existence and uniqueness of the solution for the degenerate parabolic equation with a nonlocal source and homogeneous Dirichlet boundary condition. Moreover, we p...
在[1]的基础上进一步研究神经传播型方程utt-△ut=f(u)ut+g(u)(1)的初值问题解的非整体存在性与blowup.通过引进一归一化的高斯函数作为初值问题的“特征函数”证明了,当f(u),g(u)与初值满足与[1]类似条件时,解在有限时间内blowup,从而推广和补充了[1]的结果。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...