理学 >>> 数学 >>> 计算数学 >>> 插值法与逼近论 常微分方程数值解 偏微分方程数值解 积分方程数值解 数值代数 连续问题离散化方法 随机数值实验 误差分析 计算数学其他学科
搜索结果: 1-15 共查到计算数学 mathematics相关记录118条 . 查询时间(0.069 秒)
扩展有限元法(XFEM)是目前裂纹分析的主流数值方法。2009年起,ABAQUS、ANSYS等主流商业软件集成XFEM并应用于裂纹问题,标志着该方法被工业界广泛接受。然而,在实际应用中XFEM仍然受到两方面的困扰:总体方程高度病态和动力学计算时能量难以守恒。基于“困难的根源在于单位分解插值引入的额外自由度”这一判断和认识,我们提出了一种无额外自由度的改进型扩展有限元方法,有效解决了现有方法总体刚度...
In this paper, we will provide the the finite element method for the electro-osmotic flow in micro-channels, in which a convection-diffusion type equation is given for the charge density ρe. A time-di...
Viewingtheadditiveeigenvaluesasamapwithrespecttodomainperturbationbyscal- ing, we show that this map enjoys some regularity. Precisely, let c(λ) be the additive eigenvalue with respect to (1 + r(λ))Ω,...
A fundamental problem from computational learning theory is to well-reconstruct an unknown function on the discrete hypercubes. One classical result of this problem for the random query model is the l...
We survey known results concerning cancellation laws in cardinal arithmetic without the axiom of choice. These results include the cancellation law for Dedekind finite cardinals in cardinal addition a...
The continued fraction is a very old and classical object. Its period is closely related to the solubility of the Pell equations, and also to the class group of quadratic fields. Last year, Koymans an...
报告给出分数阶微分方程的快速L1格式的计算公式,通过采用广义离散Gronwall不等式,证明快速L1格式与L1格式的误差与时空步长无关,可以任意小。该证明方法比较简单,可以简化分数阶微分方程快速算法的收敛性分析。
Scattering from the coated targets embedded in a multilayered medium has attracted much interest during recent years for extensive applications, such as sea radar target detection and underwater radar...
D-finite functions are solutions of homogeneous linear differential equations with rational function coefficients. This is an important class of special functions since it appears ubiquitously in alge...
计算思维是并列于逻辑思维和实证思维的三大科学思维之一,具有独特的观察世界和解决问题的模式。报告从一个具体例子,即大数据集中最大元素的筛选算法的介绍,讨论了PAC方法背后的计算思维内涵,特别是如何从计算角度看待和认知世界,以及通过计算解决问题的特点。同时讨论了计算思维赋能的三个阶梯,及其与Bloom分类中六个层次的关系.
The production of oil and gas from organic-rich shale formations has changed the worldwide economy and energy outlook. Although extensive research on macroscopic behaviors in shale has been carried ou...
当前“双碳”背景下,由气候变化导致的水资源、生态、灾害问题凸显。“气候变暖冰先知”,三极(南极、北极和青藏高原)的冰量变化直接关系着下游水资源和海平面的上升,对当地生态环境、社会经济和灾害预防有着重要影响。如何用科学计算手段准确模拟极地冰盖和山地冰川的运动和变化,是当前气候系统模拟当中的重大科学问题。报告人将结合野外科考经历,回顾冰流动力模拟的历史,介绍当前国际冰川和冰盖数值模拟的现状,并探讨未来...
In this lecture, I will discuss how ``tilted interlacements’’ and ``solidification of porous surfaces’’, two specific realizations of the change-of-measure and coarse graining ideas respectively, prod...
On behalf of the organizing committee, we are pleased to announce that The International Conference on Computational Mathematics, Physics and It’s Applications ( ICCMPA 2018 ) will be held from March...
Welcome to the official website of Fourth International Conference on Mathematics and Computing 2018. It is a premier forum for the presentation of new advances and research results in the field of Co...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...