¹ÜÀíѧ >>> ¹ÜÀí¿ÆѧÓ빤³Ì ¹¤É̹ÜÀí ¹«¹²¹ÜÀí ÈËÁ¦×ÊÔ´¿ª·¢¹ÜÀí Å©ÁÖ¾­¼Ã¹ÜÀí ͼÊé¹Ý¡¢Ç鱨Óëµµ°¸¹ÜÀí ͳ¼Æѧ
ËÑË÷½á¹û: 1-4 ¹²²éµ½¡°¹ÜÀíѧ associated random variables¡±Ïà¹Ø¼Ç¼4Ìõ . ²éѯʱ¼ä(0.134 Ãë)
We study the almost sure convergence of weighted averages of associated and negatively associated random variables. Our theorems extend and generalize strong laws of large numbers for positively an...
The aim of this note is to prove the strong version of the CLT for associated sequences without any strong approximation theorems. In the proofs we only apply the weighted convergence result for av...
We prove the Marcinkiewicz-Zygmund SLLN (MZ- -SLLN) of order p, ~ € 1 12,[ , br associated sequences, not necessarily stationary. Our assumption on the moment of the random variables is minimal. We...
We prove an exponential inequality for negatively associated and strictly stationary random variables. A condition is given for almost sure convergence and the associated rate of convergence is specif...

ÖйúÑо¿Éú½ÌÓýÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÖйúѧÊõÆÚ¿¯ÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÊÀ½ç´óѧ¿ÆÑлú¹¹ÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

Öйú´óѧÅÅÐаñ-Ìõ

ÕýÔÚ¼ÓÔØ...

ÈË¡¡Îï-ƪ

ÕýÔÚ¼ÓÔØ...

¿Î¡¡¼þ-ƪ

ÕýÔÚ¼ÓÔØ...

ÊÓÌý×ÊÁÏ-ƪ

ÕýÔÚ¼ÓÔØ...

ÑÐÕÐ×ÊÁÏ -ƪ

ÕýÔÚ¼ÓÔØ...

֪ʶҪÎÅ-ƪ

ÕýÔÚ¼ÓÔØ...

¹ú¼Ê¶¯Ì¬-ƪ

ÕýÔÚ¼ÓÔØ...

»áÒéÖÐÐÄ-ƪ

ÕýÔÚ¼ÓÔØ...

ѧÊõÖ¸ÄÏ-ƪ

ÕýÔÚ¼ÓÔØ...

ѧÊõÕ¾µã-ƪ

ÕýÔÚ¼ÓÔØ...