工学 >>> 信息与通信工程 >>> 信息处理技术 >>> 图象处理 >>>
搜索结果: 1-5 共查到图象处理 PCA相关记录5条 . 查询时间(0.109 秒)
本文提出了一种变化检测方法以提高算法的鲁棒性、检测精度以及抗噪性.首先对差值法构造的差异图和比值法构造的差异图进行小波融合.然后将融合图像分成互不重叠的小块,并用主成分分析得到图像块的正交基.通过将融合图像中每个像素的邻域小块映射到正交基上使得每个像素用一个特征向量来表示.最后用基于核的模糊C均值对特征向量进行聚类.实验结果显示与使用单一类型差异图的聚类方法相比,本方法由于采用了图像融合的策略而增...
针对传统的PCA变换遥感图像融合技术会丢失部分多光谱遥感图像的光谱信息变量,从而造成光谱图像信息域的失真问题提出了基于PCA变换与小波变换的遥感图像融合方法。该方法首先提出多光谱遥感图像信息域的各波段相关矩阵的特征值变量和特征向量域,对多光谱图像进行主分量的变换,继而求得各主分量变量;然后将非灰度图像与多光谱图像信息域的首个主分量做直方图信息变量的匹配,利用小波变换融合方法来实现多光谱图像信息变量...
眼电伪迹干扰是脑电信号中的常见干扰,严重影响到有用脑电信号的提取和分析。提出一种基于主分量分析(PCA)和特征矩阵联合相似对角化(JADE)算法相结合的眼电伪迹去除方法,并探讨了主分量分析对伪迹去除的影响。实验结果表明了该算法的有效性及稳健性,并且其时间开销小。此外该算法还可以有效去除其他脑电伪迹及干扰成分。
基于二阶统计特性的主分量分解(PCA)和基于高阶统计特性的独立成分分析(ICA)是盲源分离信号处理中两种最为典型的方法.针对多通道脑磁信号的消噪问题,提出一种基于PCA与ICA相结合的信号消噪新算法.首先通过对脑磁信号进行主分量分解来降低信号维数,去掉其中包含的冗余成分,使计算时间缩短到原来的10%;进而利用自适应最大熵独立成分分析算法对降维后的数据进行二次分解,提取出脑磁信号中含有的干扰分量,使...
波段选择是去除高光谱图象段间冗余,实现降维的有效方法。该文提出了一种新的基于分类别主成分分析 (PCA)散度的波段选择方法。即首先对训练集各类样本分别进行PCA变换去相关并计算散度,接着分析相应PCA变换系数获得对各类样本分类都重要的原始波段,在综合考虑波段的相关度,散度和子集规模的基础上获得最终选择波段。复杂度分析表明该方法较局部寻优的前向搜索计算量大为降低,提高了效率,并用高光谱遥感图象的分类...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...