搜索结果: 1-15 共查到“数学 Limit”相关记录144条 . 查询时间(0.136 秒)
Academy of Mathematics and Systems Science, CAS Colloquia & Seminars: On the dimension of limit sets on the real projective plane via stationary measures
实射影平面 极限集 维数 平稳测度
2023/11/29
Academy of Mathematics and Systems Science, CAS Colloquia & Seminars:On the dimension of limit sets on the real projective plane via stationary measures
实射 影平面 极限集 维数 平稳测度
2023/11/15
Academy of Mathematics and Systems Science, CAS Colloquia & Seminars:On deformation limit in deformation theory
变形理论 变形极限 射影流形
2023/11/15
Academy of Mathematics and Systems Science, CAS Colloquia & Seminars:On the L2 rate of convergence in the limit from the Hartree to the Vlasov–Poisson Equation
哈特里到弗拉索夫 泊松方程 极限 L2收敛率
2023/4/13
Academy of Mathematics and Systems Science, CAS Colloquia & Seminars:Global quasineutral Euler limit for the Vlasov-Poisson-Landau system with rarefaction waves
稀薄波 弗拉索夫-泊松-朗道系统 准中性 欧拉极限
2023/4/24
安徽师范大学数学计算机科学学院概率论与数理统计英文课件Chapter4 Limit Theorems
安徽师范大学数学计算机科学学院 概率论 数理统计 英文课件 Chapter4 Limit Theorems
2019/11/26
安徽师范大学数学计算机科学学院概率论与数理统计英文课件Chapter4 Limit Theorems。
昆明理工大学理学院概率论与数理统计课件Chapter 5 The Law of Large Numbers and the Central Limit Theorem--The Central Limit Theorem
昆明理工大学理学院 概率论与数理统计 课件 Chapter 5 The Law of Large Numbers and the Central Limit Theorem The Central Limit Theorem
2017/4/17
昆明理工大学理学院概率论与数理统计课件Chapter 5 The Law of Large Numbers and the Central Limit Theorem--The Central Limit Theorem.
昆明理工大学理学院概率论与数理统计课件Chapter 5 The Law of Large Numbers and the Central Limit Theorem--Law of Large numbers
昆明理工大学理学院 概率论与数理统计 课件 Chapter 5 The Law of Large Numbers and the Central Limit Theorem Law of Large numbers
2017/4/17
昆明理工大学理学院概率论与数理统计课件Chapter 5 The Law of Large Numbers and the Central Limit Theorem--Law of Large numbers.
昆明理工大学理学院概率论与数理统计课件Chapter 5 The Law of Large Numbers and the Central Limit Theorem--Chebyshev’s Inequality
昆明理工大学理学院 概率论与数理统计 课件 Chapter 5 The Law of Large Numbers and the Central Limit Theorem Chebyshev’s Inequality
2017/4/17
昆明理工大学理学院概率论与数理统计课件Chapter 5 The Law of Large Numbers and the Central Limit Theorem--Chebyshev’s Inequality.
安徽师范大学概率论与数理统计课件Chapter4 Limit Theorems。
SZEGO LIMIT THEOREMS ON THE SIERPINSKI GASKET
Analysis on Fractals equally distributed sequences Laplacian localized eigenfunctions Sierpinski gasket strong Szego limit theorem
2015/12/10
We use the existence of localized eigenfunctions of the Laplacian on the Sierpinski gasket (SG) to formulate and prove analogues of the strong Szego limit theorem in this fractal setting.Furthermore, ...
Fractional diffusion limit for collisional kinetic equations
fractional diffusion fractional heat equation anomalous heat transport linear Boltzmann equation relaxation equation linear BGK equation diffusion limit anomalous diffusion limit anomalous diffusive time scale mathematical derivation
2015/10/15
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, t...
Fractional diffusion limit for collisional kinetic equations:A moments method
Kinetic equations linear Boltzmann equation asymptotic analysis diffusion limit anomalous diffusion limit fractional diffusion relaxation equation anomalous diffusive time scale
2015/10/15
This paper is devoted to hydrodynamic limits of linear kinetic equations. We consider situations in which the thermodynamical equilibrium is described by a heavy-tail distribution function rather than...
Anomalous diffusion limit for kinetic equations with degenerate collision frequency
Anomalous diffusion limit kinetic equations degenerate collision frequency
2015/10/15
This paper is devoted to hydrodynamic limits for collisional linear kinetic equations. It is a classical result that under certain conditions on the collision operator, the long time/small mean free p...
Fractional diffusion limit for collisional kinetic equations:a Hilbert expansion approach
Fractional diffusion limit collisional kinetic equations Hilbert expansion
2015/10/15
We develop a Hilbert expansion approach for the derivation of fractional diffusion equations from the linear Boltzmann equation with heavy tail equilibria.